Past Year JEE Questions

Questions

Quetion: 01

The vector equation of the plane through the line of intersection of the planes x + y + z = 1and 2x + 3y + 4z = 5 which is perpendicular to the plane x - y + z = 0 is :

A. $\vec{r} \times \left(\stackrel{\wedge}{i} - \stackrel{\wedge}{k} \right) - 2 = 0$ B. $\vec{r} \cdot \left(\stackrel{\wedge}{i} + \stackrel{\wedge}{k} \right) + 2 = 0$ C. $\vec{r} \cdot \left(\stackrel{\wedge}{i} - \stackrel{\wedge}{k} \right) + 2 = 0$ D. $\vec{r} \times \left(\stackrel{\wedge}{i} - \stackrel{\wedge}{k} \right) + 2 = 0$

Solutions

Solution: 01

Explanation

 $P_1: x + y + z = 1$

```
P_1: 2x + 3y + 4z = 5
```

Equation of the plane passing through the line of intersection of the plane P_1 and P_2 is :

$$\mathsf{P}_1 + \lambda \mathsf{P}_2 = 0$$

$$\Rightarrow$$
 (x + y + z - 1) + λ (2x + 3y + 4z - 5) = 0

 $\Rightarrow x(1 + 2\lambda) + y(1 + 3\lambda) + z(1 + 4\lambda) - 5\lambda - 1 = 0 \dots (1)$

Direction Ratio (D.R) of this plane = $(1 + 2\lambda, 1 + 3\lambda, 1 + 4\lambda)$

Plane (1) is perpendicular to x - y + z = 0, whose D.R = (1, -1, 1)

As they are perpendicular so dot product of D.R = 0

$$\therefore$$
 (1) (1 + 2 λ) + (-1) (1 + 3 λ) + (1) (1 + 4 λ) = 0

$$\Rightarrow 1 + 2\lambda - 1 - 3\lambda + 1 + 4\lambda = 0$$

$$\Rightarrow \lambda = -\frac{1}{3}$$

Putting the value of λ in equation (1), we get

 $\Rightarrow \frac{x}{3} - \frac{z}{3} + \frac{2}{3} = 0$ $\Rightarrow x - z + 2 = 0$

Vector form of this plane,

$$\vec{r}.\left(\stackrel{\wedge}{i}-\stackrel{\wedge}{k}\right)+2=0$$